Table 1. Effects of ultrahigh hydrostatic pressure on various microorganisms (Ortega-Rivas 2012)

	Conditions				
	Pressure (MPa)	Time (min)	Decimal reduction	Media	
Microorganism	300	5	5	Satsuma mandarin juice	
Saccharomyces cerevisiae	300	5	5	Satsuma mandarin juice	
Aspergillus awamori	360	5	1	Minced beef muscle	
Listeria innocua	360	10	4	Phosphate buffer saline	
Listeria monocytogenes	350	10	2.5	Phosphate buffer saline	
Vibrio parahaemolyticus	172	10	1.8	Phosphate buffer	
Salmonella typhimurium	345	10	1.8	Fresh cut pineapple	
Total plate count	340	5	1.9		

Table 2. Antimicrobial activity of aromatic plants and essential oils added to cheeses (Gouvea et al., 2017)

Cheese Type	Natural antimicrobial (Source and concentration)	Inhibitory activity (microrganisms, counts, and storage conditions)	Reference
Feta	Oregano ($0.1 \mathrm{~mL} 100 \mathrm{~g}^{-1}$) Thyme ($0.1 \mathrm{~mL} \mathrm{100}{ }^{-1}$)	Inhibition of L. monocytogenes and E. coli 0157: H7 population ($10^{4} \mathrm{CFU} \mathrm{g}^{-1}$) for 18 and 22 days, respectively, after storage under modified atmosphere packaging (50% de CO_{2} e 50% de N_{2}) at $4^{\circ} \mathrm{C}$.	GOVARIS et al. (2011)
Cheddar	Garlic (dipping 25 g of cheese in 100 mL of plant extract solution).	Inhibition of L. monocytogenes ($2 \log \mathrm{CFU} \mathrm{mL}^{-1}$) after storage at $23^{\circ} \mathrm{C}$ for 9 days.	SHAN et al. (2011)
Kareich	Cayenne (3\%) or Green Pepper (9\%)	Inhibition of S. aureus ($1 \times 10^{8} \mathrm{CFU} \mathrm{g}^{-1}$) to undetectable levels within 2 days of storage at $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$.	WAHBA et al. (2010)
Domiati	Black cumin seed oil (0.1\% e 0.2\%)	Decreased in Salmonela enteritides and Escherichia coli counts from $3.95 \log \mathrm{CFU} \mathrm{mL}^{-1}$ to $2.6 \log \mathrm{CFU} \mathrm{g}^{-1}$ after storage at $4^{\circ} \mathrm{C}$ for 42 days.	HASSANIEN et al. (2014)
Sheep's cheese	Rosemary essential oil ($215 \mathrm{mg} \mathrm{L}{ }^{-1}$)	Prevented the growth of Clostridium spp. counts $3 \log$ $\mathrm{CFU} \mathrm{g}{ }^{-1}$ ripened for 5 months at $12^{\circ} \mathrm{C}$	MORO et al. (2015)
Coalho Cheese mimicking models	Thymus essential oils ($\mathbf{2} .5 \mu \mathrm{~L} \mathrm{~mL}{ }^{-1}$)	Reduced $1.3 \log$ CFU mL^{-1} counts (from initial count) of L. monocytogenes incubated at $10^{\circ} \mathrm{C}$ for 24 hours	CARVALHO et al. (2015)
Cheddar Based Media	Cinnamon ($400 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$) garlic ($625 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$), lemon grass ($550 \mu \mathrm{~g}$ mL^{-1}), cress $(475 \mu \mathrm{~g} \mathrm{~mL}$), rosemary ($750 \mu \mathrm{~g} \mathrm{~mL}^{-1}$), sage ($825 \mu \mathrm{~g} \mathrm{~mL}^{-1}$) and oregano extracts ($950 \mu \mathrm{~g} \mathrm{~mL}$)	All extract concentrations individually inhibited the population of L. monocytogenes ($4 \times 10^{5} \mathrm{CFU} \mathrm{mL}^{-1}$) incubated at $37^{\circ} \mathrm{C}$ for 24 hours	TAYEL et al. (2015)
Fior di Latte	Thyme and sage essential oil ($1500 \mathrm{mg} \mathrm{kg}^{-1}$)	Inhibition of Pseudomonas spp and coliforms stored at $10^{\circ} \mathrm{C}$ for 6 days	GAMMARIELLO et al. (2008)
Whey and Requesón whey	Safranal ($35 \mu \mathrm{~g} \mathrm{~kg}$ - ${ }^{-1}$	Inhibited over 15% Penicillium verrucosum growth (population of $10^{5} \mathrm{CFU} \mathrm{mL}{ }^{-1}$ of spore).	LIBRȦN et al. (2014)

Fig. 1. A typical high-pressure processing system for treating prepackaged foods (Source: Anon (2008)

Fig. 2. Schematic layout for a Pulsed Electric Fields (PEF) treatment pilot [adapted from Picart and Cheftel (2003).

Fig. 3. A monitoring system for pulsed light energy (Ortega-Rivas 2012)

Fig. 4. Different types of irradiation
(https://www.altermedicine.org/electromagnetic-fields-spectrum/)

1-milk inlet; 2-pump; 3-membrane; 4-valve; 5-UV-C lamp; 6- quartz sleeve; 7 - power detector of UV-C; 8- perfluoroalkoxy tube; 9 - 3 -way valve; 10 - milk outlet Fig. 5.UV light processing (Zhang, et al., 2021)

Suspension on coss.flow

Filtate

Suspension on coss.flow

Fig. 6. Ultrasound processing
https://www.slideshare.net/siddharthVishwakarma5/ultrasound-processing-91038608

Fig. 7. Dielectric Barrier Discharge Plasma treatment (Yakup, 2016)

Fig. 8. Mode of action of bacteriocins by lactic acid bacteria (Cotter et al., 2013)

Fig. 9. Schematic diagram of the apparatus for the pressurized CO2 treatment (Hong et al., 1999).

Fig. 10. Schematic diagram of ozone generation by corona discharge method (Rice et al. 1981).

Fig. 11. Mode of action of active packaging and intelligent packaging(Sharma et al., 2017)

